# Really Simple Algorithm This is a typical RSA challenge. On netcatting the server, we get

p: 692978822802216497910263439691526372004023822242590405470708610553024726
902107848499618752687457377038930308135719449550272132309308464475108356502
3419193
q: 818545152008458581431308715472370387421587511434432009344550954468777476
263587958368173933311893826927568771762410426498881666412168638407642679708
2583709
e: 65537
ct: 32339597696112020672456048174497066278381984032062108835179880038510430
273215133772725151255048701614260554686353233886359332147981662885894807440
689371006779234552225971993752542529236343547917953433930922604820751362507
992551012513309785904323711107093361652451623376766542104555644651054024466
081454822549


Now, following wikipedia article, one could understand, in order to solve the challenge, one need to follow the following steps :-

• calculate n = p*q
• calculate phi of n which is euler’s totient which denotes the number of positive integers, which are relatively prime (GCD=1) with n.
In our case, it is calculated as phi = (p - 1) * (q - 1)
• calculate the decryption key d which is modular inverse of encryption key e over phi
It is calculated using extended gcd. For our case, we can find the implementation in gmpy2
• d = gmpy2.invert(e, phi)
• Once you have d, one can easily calculate plaintext as ciphertext raised to the power d modulo n
• pt = pow(ct, d, n)
• converting pt from integer representation to a string or byte-string prepresentation
• plaintext = bytes.fromhex(hex(pt)[2:]) or equivalently plaintext = int.to_bytes(pt,(pt.bit_length()+7)//8,'big')
• print the plaintext, print(plaintext.decode())

Now, this process can be automated too, but since time is not concerned with this task as with the next Really Speedy Algorithm, I like to do it anyways

from pwn import remote
from gmpy2 import invert

HOST, PORT = "95.216.233.106", 20391

REM = remote(HOST, PORT)

p = int(REM.recvline().decode().strip()[3:])
q = int(REM.recvline().decode().strip()[3:])
e = int(REM.recvline().decode().strip()[3:])
ct = int(REM.recvline().decode().strip()[4:])

PHI = (p - 1) * (q - 1)
D = invert(e, PHI)
MESSAGE = pow(ct, D, p * q)
print(bytes.fromhex(hex(MESSAGE)[2:]).decode())


And we get our flag