# Really Secret Algorithm

We've received a weird message, but it's not in a format we've ever seen before.

-*-*-*- BEGIN ARR ESS AYY MSG -*-*-*-
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
00000s&nYASMBl==Raa6f1mSybO1&P
n=MSlA^HVasQovKL?f9nB=?Wjz*-}bj
4rNeU}9v(Tcn16Ji;Mjv?)4T@pD@76=
9j%)LevT&=&p%BMcIckO@P450UqkjIR
6DT^igJmh5<xI<alHa3p;VuZ%5HWp>1
#T6e(?T*2I
00962
jx@>fERjV6gRSH!+pdv<kOoEVD#<P05
<nAMIT@fYQOcbQ{VfQh+sli_--_zE8)
G@9Y^2j=XLkGz;kZTPS&eJtOKwM~!V6
SmtDRCJ%568a_utlnc?ywyQ^??W!-Ro
%%d9c?q+nQ*s<4Sn4@*0vXe9sl<*c8
*WY0^
-*-*-*- END ARR ESS AYY MSG -*-*-*-

We also recovered a snippet of the generator function, but we've not been able to get anywhere with it.

def encrypt(message):
p,q=rsa.prime_pair(bits=1024)
ct=base64.b85encode(rsa.encrypt(rsa.solve_for(p=p,q=q,e=e),message.encode()))
ct=b'\n'.join(ct[i:i+31].center(41)for i in range(0,len(ct),31))
p,q=int.to_bytes(p,128,'big'),int.to_bytes(q,128,'big')
s,key=0,bytearray()
for(i,j)in zip(p,q):
key.append(i^s)
key.append((j^(s:=s^i),s:=s^j))
key=base64.b85encode(key)
key=b'\n'.join(key[i:i+31].center(41)for i in range(0,len(key),31))
e_str=base64.b85encode(int.to_bytes(e,4,'big')).center(41)
return b'  -*-*-*- BEGIN ARR ESS AYY MSG -*-*-*-\n' + key + b'\n' + e_str + b'\n' + ct + b'\n' + b'   -*-*-*- END ARR ESS AYY MSG -*-*-*-\n'


Lets work out how the encrypt algorithm works line by line

• It generates two 1024 bit RSA primes p and q
• converts p and q to bytes (byte-arrays)
• initialises an integer s to zero, and a bytearray, lets further break down next few lines
• for (i,j) in zip(p,q) reads p and q byte-by-byte
• append i^s to key
• This line is something new because of the new walrus operator := in python3.8 which is a kind of assignment operator which assigns and returns the assigned value.
so the following line would be equivalently:-
  s = s^i
key.append(j^s)
s = s^j

• base85 encode the key
• format the key into 3 sections of key, e_str, and ct with centering as a visual demarking.

Lets quickly split the provided key into parts

import base64
import gmpy2
key_part = """
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
0000000000000000000000000000000
00000s&nYASMBl==Raa6f1mSybO1&P
n=MSlA^HVasQovKL?f9nB=?Wjz*-}bj
4rNeU}9v(Tcn16Ji;Mjv?)4T@pD@76=
9j%)LevT&=&p%BMcIckO@P450UqkjIR
6DT^igJmh5<xI<alHa3p;VuZ%5HWp>1
#T6e(?T*2I
"""

e_str_part = """00962"""

ct_part = """
jx@>fERjV6gRSH!+pdv<kOoEVD#<P05
<nAMIT@fYQOcbQ{VfQh+sli_--_zE8)
G@9Y^2j=XLkGz;kZTPS&eJtOKwM~!V6
SmtDRCJ%568a_utlnc?ywyQ^??W!-Ro
%%d9c?q+nQ*s<4Sn4@*0vXe9sl<*c8
*WY0^
"""

key_b85 = "".join(i for i in key_part.strip().split()).encode()
key = base64.b85decode(key_b85)
e = int.from_bytes(base64.b85decode(e_str_part.encode()), "big")
ct_b85 = "".join(i for i in ct_part.strip().split()).encode()
ct = int.from_bytes(base64.b85decode(ct_b85), "big")


Now we will extract p and q from the key by reversing the walrus snippet in encrypt, which is done in following steps:-

• initialize s to zero
• initialize two byte arrays for p and q
• take out two bytes at a time from key namely a and b
• as i was coming from p and j from q, we extract i and j
• i is a ^ s of current iteration
• j is a ^ b of current iteration
• update s for next iteration
def get_pq(key):
s = 0
p = bytearray()
q = bytearray()
for i in range(0, len(key), 2):
a, b = key[i:i + 2]
p.append(a ^ s)
q.append(a ^ b)
s = b
return int.from_bytes(p, 'big'), int.from_bytes(q, 'big')


Now once we have p and q, rest is cakewalk

p, q = get_pq(key)
phi = (p - 1) * (q - 1)
d = gmpy2.invert(e, phi)
m = pow(ct, d, p * q)
print(bytes.fromhex(hex(m)[2:]))


And we get our flag